

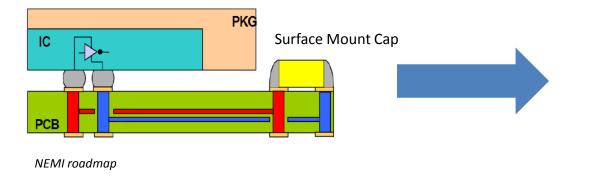
Improving Power Delivery Networks (PDNs) Using Polyimide-based Thin Laminates

2017. 7. 19.

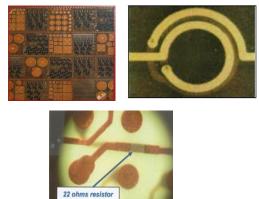
IPC

Contents

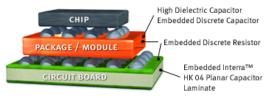
- 1. Embedded passives technology
- 2. Thin laminates: material choices and applications
- 3. Buried capacitance for power distribution network
- 4. Reliability and manufacturing process
- 5. Wrap-up


Embedded passives technology

Embedded Passives Drivers

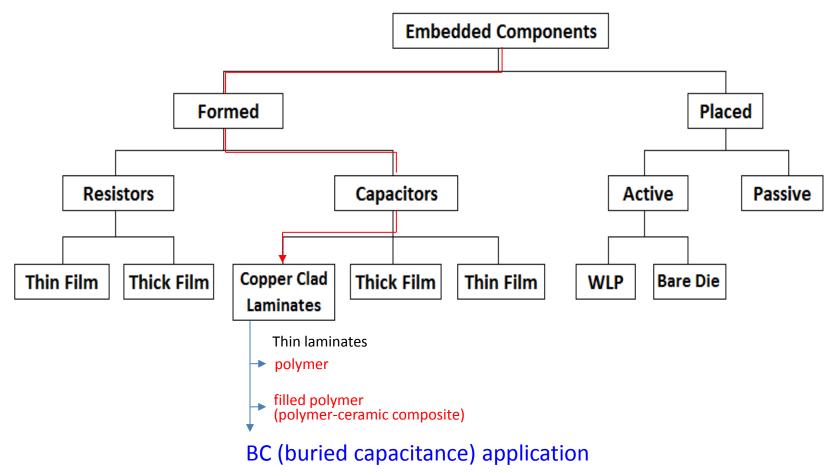


Component density is reaching its limit.


Mounting space limitation Larger current loop Vias and traces are inductive

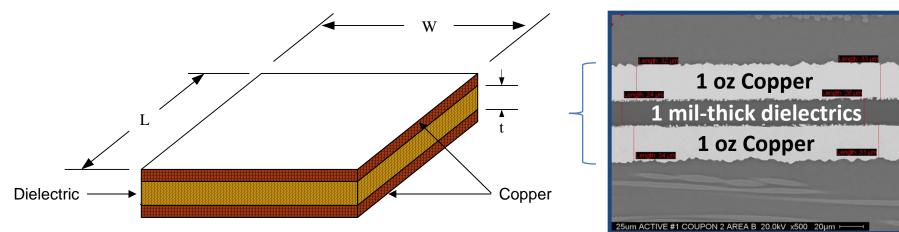
Integrated capacitor has less parasitic inductance!

- \rightarrow Field cancellation caused by opposing current
- \rightarrow planar and in-plane, current loop is much smaller


Prof. Richard Ulrich

: A discrete or active component that is fabricated or inserted as an integral part of a printed board.

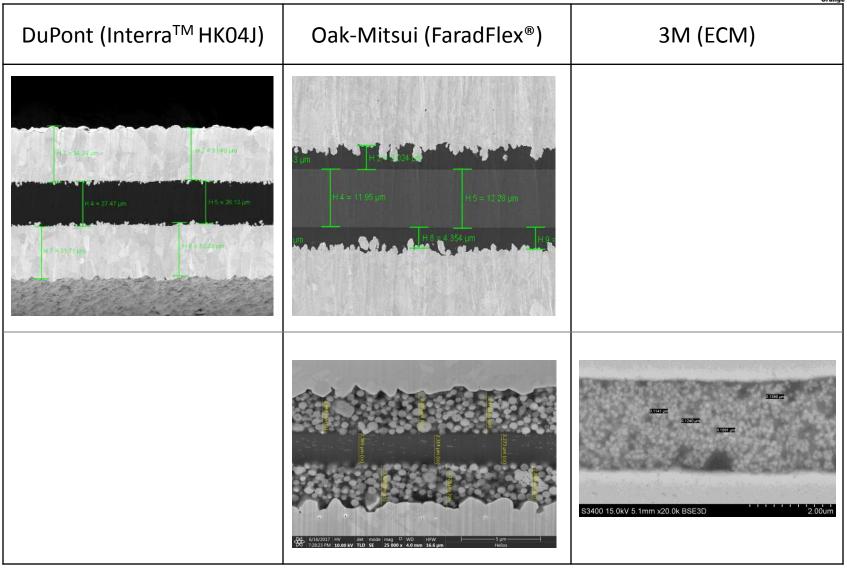
from 2013 IPC International Technology Roadmap



Thin laminates: material choices and applications

Cross-section

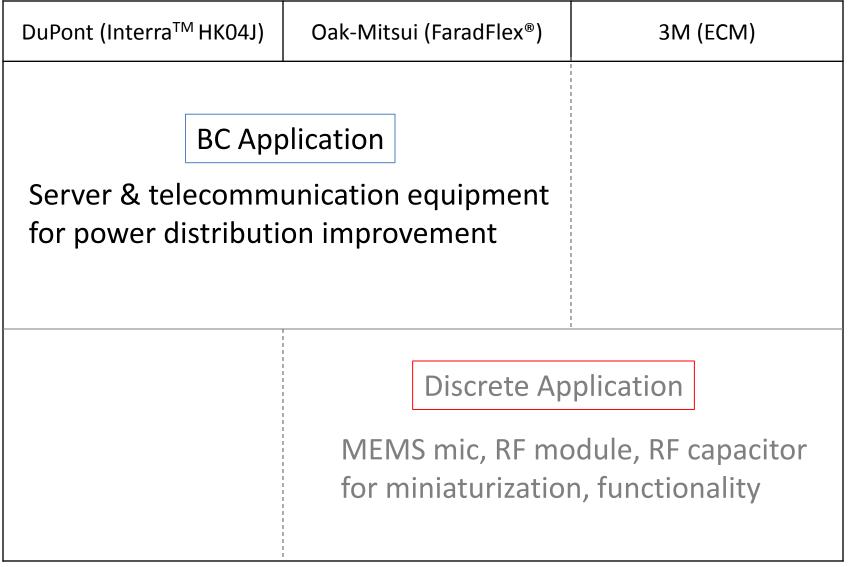
Dielectric thickness is 1mil (=25um) and below.


18 x 24 inch is standard size.

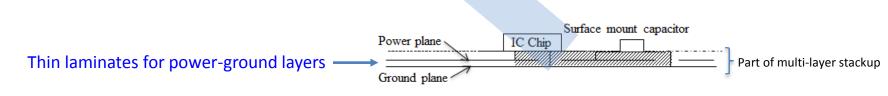
Cap. density,
$$nF/cm^2 = 0.885 \frac{k, \text{ the dielectric constant}}{\text{dielectric thickness, } \mu m}$$

($nF/cm^2 \ge 0.45 = nF/in^2$) Prof. Richard Ulrich

Thin Laminates : Material Choices



Thin Laminates for High Layer Count PCB


QUPIND.

High-end computing telecom industry

SUN's V890 server and its CPU module, which has 1 mil HK 04 on some of it's power rail, Source: Istvan Novak, SUN's Experience with Thin and Ultra Thin Laminates for Power Distribution Applications, DesignCon 2006, February 6-9, 2006

Thin laminates create very low inductance!

Design with HK04J

HK04J comes in a dielectric thicknesses of 25 and 12 microns. Use HK04J to improve PDN design in high layer count PCB.

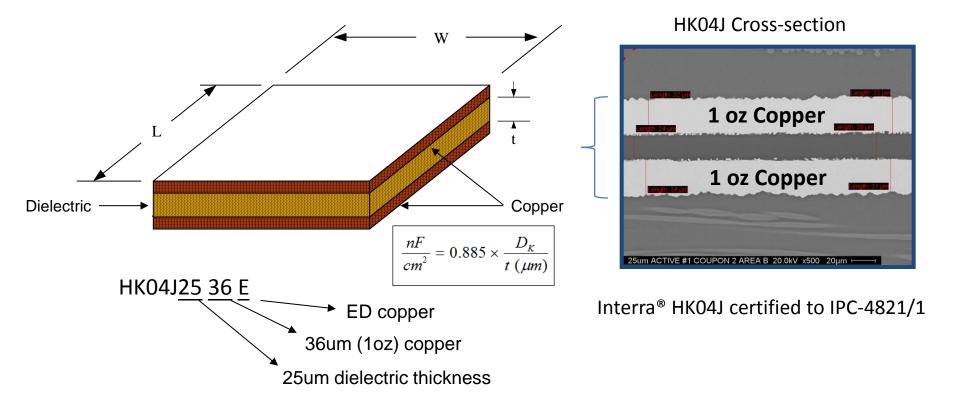
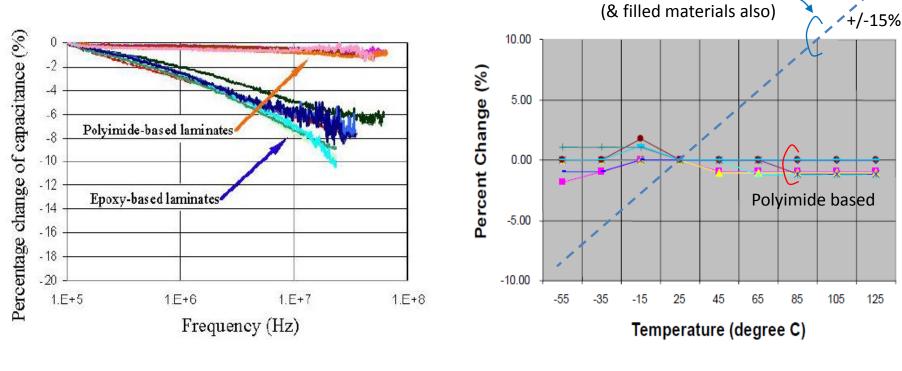


Image: Over size (i.e. 24 x 36 inch), unbalanced constructions are available.


IPC

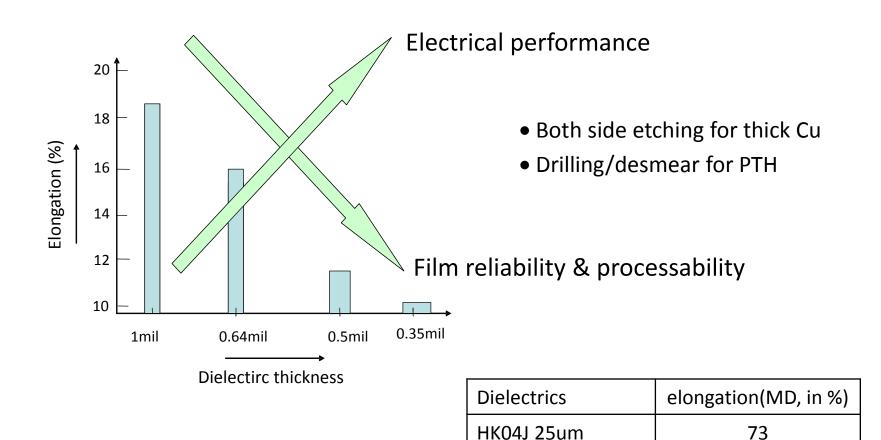
Why Polyimide?

Capacitance Stability over Temp, Freq and Bias Voltage

from Sun Microsystems

* TCC: Temperature coefficient of capacitance

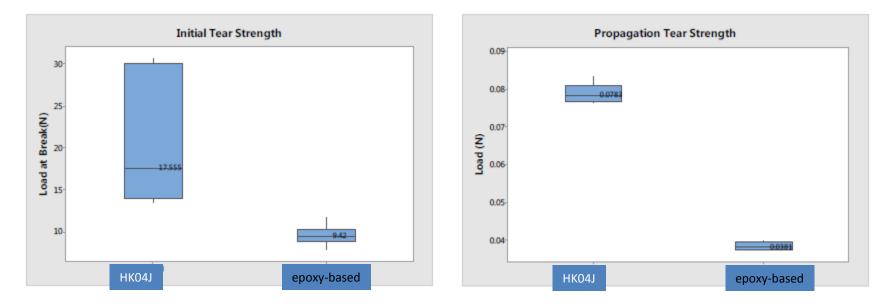
Epoxy based materials


Why Polyimide?

IPC

inners Counci

Dielectric film strength to optimize mechanical reliability and electrical performance


HK04J 8um

45

Tear Strength Side by Side Comparison for 1mil-thick BC Core

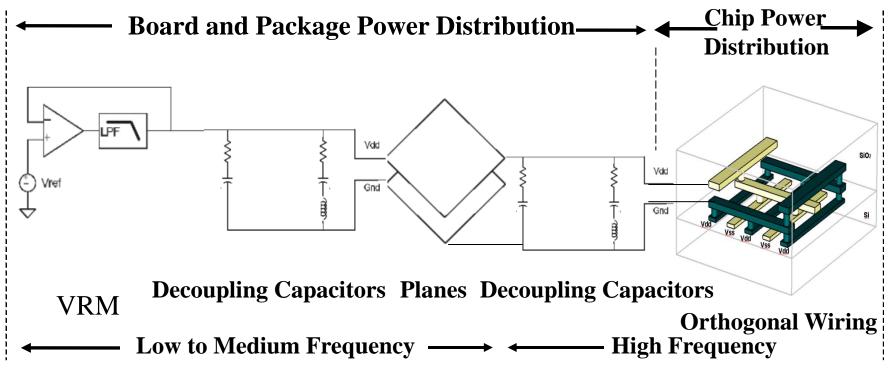
Initial & propagation tear strength of polyimide-based dielectrics is almost double than that of epoxy-based materials which indicates robustness in manufacturing.

Interra[®] HK04J Product Lineup

		Interra® HK04J			
Laminate requirement	Units	HK04J25	HK04J12	HK04J08*	
		ED	ED	ED	RA
Dielectric thickness (nominal)	μm	25	12	8	8
Peel strength	kN/m	1.8	1.4	3.2	4.7
Capacitance, at 1MHz	pF/cm ²	125	260	411	384
Thermal stress, 180sec at 288 $^\circ$ C	sec	PASS	PASS	PASS	PASS
BDV (breakdown voltage)	kV	>5	3-4	1.6	1.8

* Product under development – Initial data, based on using 2oz copper

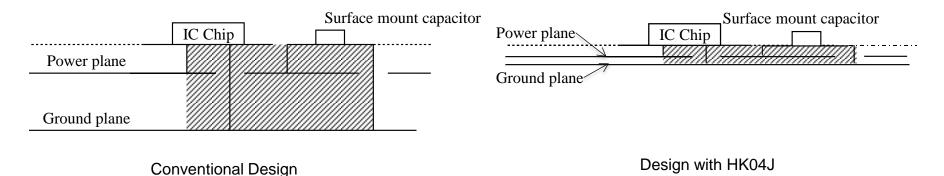
* 8u core is not commercialized but was made off our commercial line using the same process to make standard HK04J product.



Buried capacitance for power distribution network

PDN Function

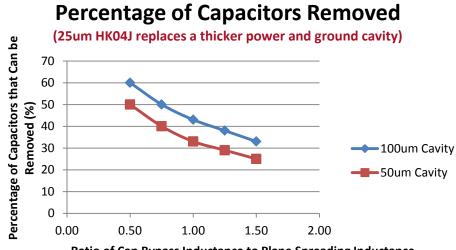
- ✤ PDN, power distribution network delivers power to ICs and other active circuits.
- Provide a return path for signals.
- PDN consists of a power supply, circuit traces, capacitors, power and ground planes, capacitors and an IC or some other active silicon
- At frequencies from as low as 100kHz the dielectric that separates power and ground planes begins strongly influencing PDN performance.
- ✤ A typical PDN looks like this :



IPC

Why HK04J Improves PDN Performance?

- Capacitors in the past have been placed on the surface of the board in parallel to reduce the capacitor bypass inductance
- The capacitance density of the thin power and ground plane laminate is very low and does not come close to matching the total capacitance of the SMT caps
- So, why does HK04J allow you to remove capacitors from the surface of the board and save money?
- HK04J reduces the plane spreading inductance and reduces modal resonances



The number of capacitors needed is less – improved escape routing, increased yield by reducing assembly defect.

There is much more flexibility in where the capacitors are placed (i.e. improved circuit density).

How Many SMT Capacitors Can I Remove?

- Estimate the capacitor bypass and plane spreading inductances. Divide the bypass inductance by the plane spreading inductance to get a factor.
- The graph shows how many capacitors can be removed from your design

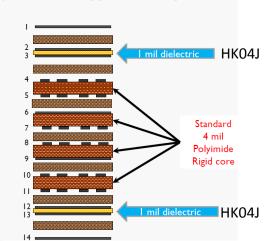
Example: If the original design uses a 100um power and ground cavity that is replaced with a 25um HK04J cavity, the percentage of capacitors that can be removed will be 43% if the ratio of the capacitor bypass network inductance to plane spreading inductance is 1.0.

Ratio of Cap Bypass Inductance to Plane Spreading Inductance

How Many SMT Capacitors Can I Remove?

POWER DISTRIBUTION NETWORK

Different dielectric thicknesses and the total amount of capacitors needed to


achieve target impedance of 0.02 Ohms:

Total Caps = 84

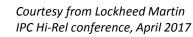
Total Caps = 35

Dielectric Thickness = 10 mil

Dielectric Thickness = 4 mil

yers, 1/2 OZ copper on all layers

Dielectric Thickness = 5 mil

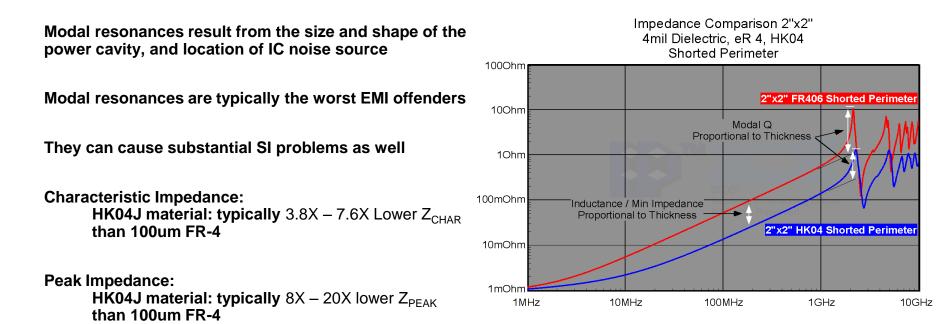

Dielectric Thickness = 3 mil

© 2017 Lockheed Martin Corporation. All Rights

of Caps vs Laminate Thickness

Total Caps = 42

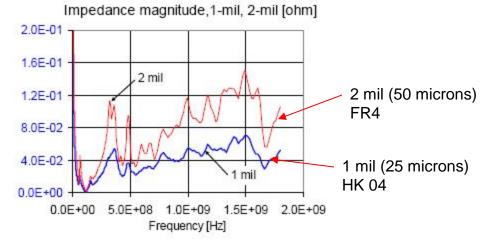
Total Caps = 33


Dielectric Thickness = 1 mil

Total Caps = 19

HK04J reduces inductance and reduces modal resonances.

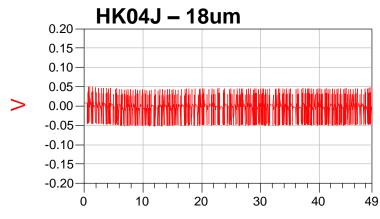
Electrical Performance


IPC

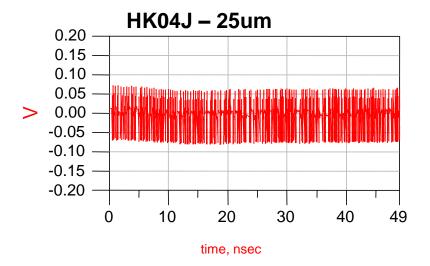
Designers Council

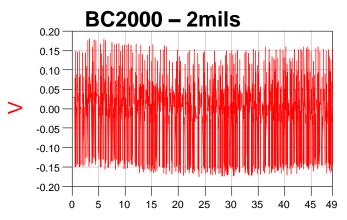
Interra® HK04J reduces impedance

Impedance Testing set-up for SUN's V890 server CPU module


Comparison of impedance b/w 2-mil FR-4 and 1-mil HK04 at one of the test points on the bare CPU module board.

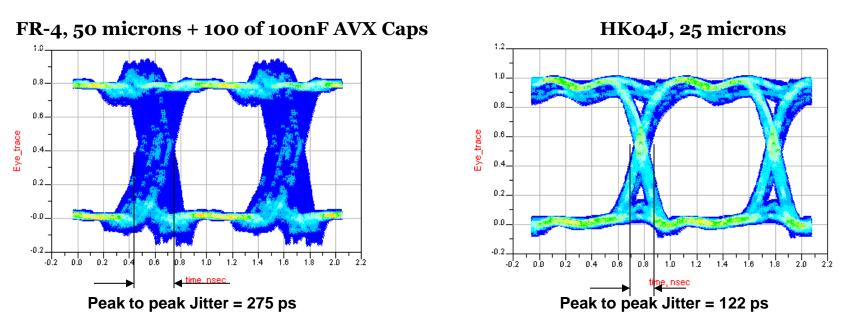
Example from a Sun V 890 server CPU module showing reduce impedance and resonance. Source: Istvan Novak, "Embedded Capacitance and Embedded Capacitors: Overview of Modeling and Applications" at DesignCon 2006, Feb 6-9, 2006, Santa Clara, CA


Electrical Performance



SSN dramatically reduced on 6 layer board with HK04J

time, nsec


time, nsec

Material	SSN (peak)
HK04J – 18um	50mV
HK04J – 25um	65mV
BC2000 – 2mils	150mV

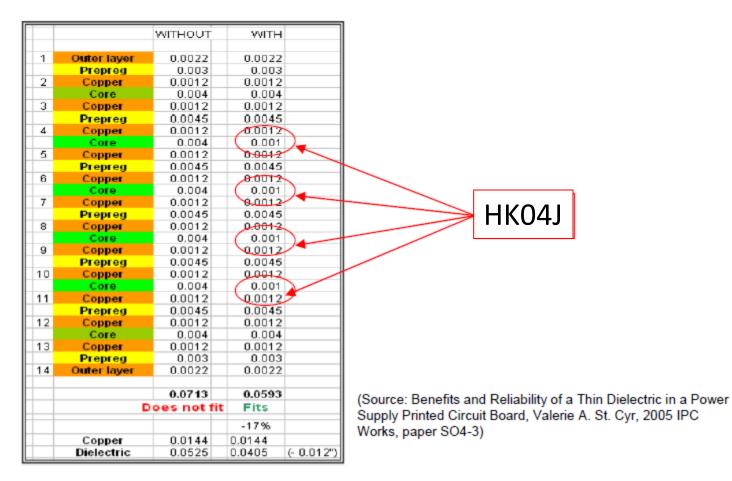
1 mil (25 μm) HK04J provides large reductions in SSN versus 2 mil BC2000

Electrical Performance

In Addition to Improved PDNs HK04J Improves Signal Integrity

Simulation confirmed comparison impact on eye-opening for above two cases:

Assumptions: Similar to Server Front Side Bus


- Link Speed = 1 Gbps
- Number of lanes = 16 bit
- Line Type = Stripline, Single Ended, 50 Ohms
- Voltage swing: 1V
- Trise/Tfall = 300 ps
- Termination = 100 Ohms to both Gnd and Vdd
- Datastream = PRBS

IPC

Designers Council

Reducing Board Thickness

Reduce board thickness or add thicker Cu layers, for the same thickness

Example of a 14-layer board using 4 layers of 1-mil HK04J compared to that using 4 layers of 4-mil FR-4, reducing board thickness by 12 mils, and helping the PWB meet a 0.060 mil thickness requirement.

IPC

Designers Council

Reducing Overall Cost

Interra[™] HK04 helps reduce total cost

- 1. Reduce the number of capacitors:
 - Typically, 30-50 % of existing capacitors can be removed
 - Typical cost: 0.5 cents per capacitor + 1.2 cents assembly, rework/yield loss.
 - Example:
 - 30-layer count PCB with 3000 caps \rightarrow 2000 caps = \$ 17 savings.
- 2. Reduce the number of PTH
 - Typically, 0.08 cents per PTH; 2 PTH per cap.
 - Example:
 - 30-layer count PCB with 3000 caps → 2000 caps = 2000 PTH saved
 = \$ 1.6 saved
- 3. Reduce signal-layers by reducing capacitors around a dense layer constraining BGA.
 - Example:
 - 24-layer count PCB → 22-layer count PCB = \$ 140-160 savings per panel.
- 4. Reduce PTH aspect ratio:
 - Replace thicker Power/Ground layers, 4-mil FR-4 → 1 mil HK 04 = 3 mils savings.
 - Reduce signal layer count.
 - Impact:
 - 9-12, 0.5 % yield per unit aspect ratio improvement
 - 12-15, 1 % yield per unit aspect ratio improvement
 - 15-18, 2 % yield per unit aspect ratio improvement

Top view of a PCB with a dense BGA (GPU)

Bottom view of a PCB: Note the dense array of SMTs that can block routing.

IPC

The design demands high performance:

When lower impedance is required from 300MHz to 800MHz (or higher) than is possible with thicker dielectric

The existing design is too expensive:

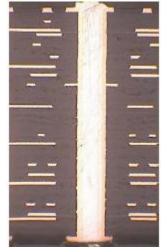
In high volume mfg HK04J 25um saves money if the original design has more than 3-4 caps / sq in In medium volume mfg HK04J 25um saves money at even lower original capacitor densities

The existing capacitor bypass network is too big:

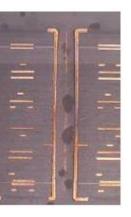
HK04J 25um typically removes > 40% of the bypass capacitors HK04J 25um removes even more capacitors in high performance designs

Reliability and manufacturing process

HK04J Shows Proven Reliability



Test	Method/Conditions	Results
Humidity, Temperature, Bias Testing, 85/85	85ºC/85% RH for 1000 hours, 100 VDC bias	Passed with no change in resistance. Resistance under conditions $\text{E10}\Omega$
Humidity Temperature Bias Testing, HAST	120°C/90% RH, 2.0 atm pressure for 69 hours, 100 VDC bias	Passed with no change in resistance. Resistance under conditions $\text{E8}\Omega$
Moisture and Insulation Resistance, M&IR	IPC TM-650 2.6.3.2	Passed. Resistance E11 Ω
Temperature Coefficient of Capacitance, TCC	From –25°C to 125°C	Variation less than 5% over range. – 15ppm/ºC
Humidity Coefficient of Capacitance	0 to 90% RH	Increase less than 10% from 0 to 90% RH
Capacitance Change with 85/85 Aging	85°C/85% RH for 1000 hours	Capacitance unchanged during aging
Peel Strength Change after Solder Float	Solder float 288°C, 10 sec	No change in peel strength
Peel Strength Change with 85/85 Aging	85°C/85% RH for 1000 hours	Peel strength > 6 pli (1N/mm) after 1000 hours
Peel Strength Change with High Temperature Aging	Bake at 150°C for 1000 hours	No change in peel strength
Peel Strength Change with Thermal Cycling	-55°C to 150°C for 1000 hours	No change in peel strength

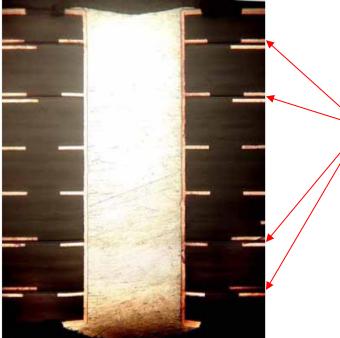

Interra[™] HK04J Reliability

Reliability tests conducted by major PWB fabricator (using HK04J in commercial volumes)

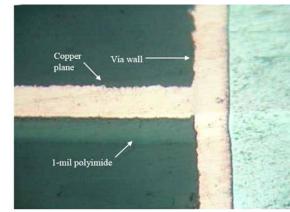
NO.	TEST ITEM	TEST CONDITION	ACCEPTANCE	TEST RESULT	SAMPLE
1	THERMAL STRESS	PER IPC-TM- 650,METHOD 2.6.8 288°C±5°C 10~11SEC. 6CYCLES	PER IPC-6012B,3.6	NO SEPARATION NO CORNER CRACK	4 PCS
2	THERMAL SHOCK	PER IPC-TM- 650,METHOD 2.6.7.2 AIR TO AIR - 55℃ → 125℃ 15MIN 15MIN TOTAL 400 CYCLES	MICROSECTION MUST HAS NO CRACK,DELAMINATIO N,BARREL CRACK AND IP-SEPARATION	PASS	2 PCS
3	PRESSURE COOKIER TEST	TEST CONDITION : 121°C,100%RH,168H PRESSURE : 2 KGF/CM ² TEST VOLTAGE : 100 VDC	MICROSECTION MUST HAS NO CRACK,DELAMINATIO N,BARREL CRACK AND IP-SEPARATION	PASS	2 PCS
4	INFRA-RED REFLOW	LEAD-FREE PROFILE (260°C) 6 CYCLES	PER IPC-6012B,3.10.8	NO DELAMINATION	3 PCS

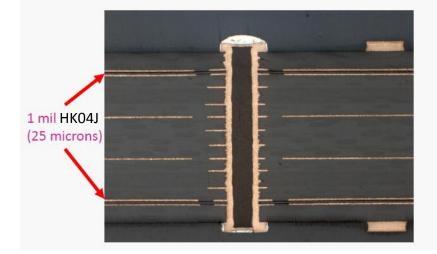
22L PWB with 2 layers of HK04J, after 6x thermal stress

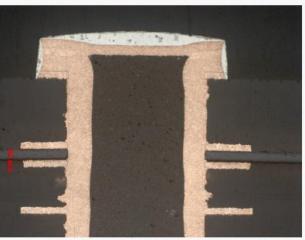
22L PWB with 2 layers of HK04J, after 400 cycles of thermal shock


IPC

Designers Council Orange County Chapter


Interra[™] HK04J Reliability


Designers Council Orange County Chapter



1 mil HK04J2536

Cross-section of PTH with 1 mil HK04J after 6 X solder float. No damage to the PTH. Source: *Istvan Novak*, SUN's Experience with Thin and Ultra Thin Laminates for Power Distribution Applications, DesignCon 2006, February 6-9, 2006

Courtesy from Lockheed Martin IPC Hi-Rel conference, April 2017

Interra[™] HK04J Manufacturing

IPC Designers Council

Interra[™] HK04 Manufacturing: Overview

Processes on equipment capable of running 2-mil FR-4.

- Does NOT Require front-edge leaders at develop/etch/strip
- Vertical Racked Black-oxide acceptable ٠
- No puncturing of clearance holes (anti-pads) during inner-layer processing. ٠
 - * Thin material processing equipment required

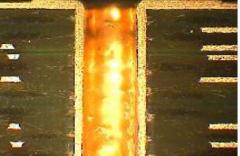
* Does require scale characterization

Double Side Processing

- One pass through the inner-layer process * Not requiring sequential lamination
- PTH electroless and electroplating process = Standard


HK04 scales consistently and scale-factors are comparable to that of 2-mil FR-4

- Dimensional Stability (mils/inch): ٠
 - Warp (MD): HK 04, Avg.: -0.16, σ = 0.18 vs. ZBC 2000, Avg.: 0.93, σ = 0.11


 - Fill (TD): HK 04, Avg.: -0.36, σ = 0.14 vs. ZBC 2000, Avg.: 0.8, σ = 0.16

Typical yields are significantly better than that of 2-mil FR-4

- HK04 Inner Layer Yield (after HiPot), Typically = 99 % vs. 2-mil FR-4 = 85-97 %
- HK04 Final process yield, typically = 98 %, vs. 2-mil FR-4 = 85-97 %
- Processing costs similar to that of 2-mil FR-4

Cross-section of a PTH plated using standard electroless/electroplating process

Processing Guidelines

Process – step	Guideline	Special concerns, if any and resolutions	Typical Yield
Preclean/ Lamination	Thin core equipment required – no leaders	 Surface Cleaning = standard Need to be careful that the chain grippers on the roller coat line dryer don't tear through the edges for the material. 	99+%
Expose	Standard Process	No Known Issues	99+%
Develop, Etch, Strip	Thin core equipment required, no leaders	No Known Issues	
Post Etch Punch	Front/ Manual Unloading Required	No issues with the cameras on etched fiducials.	99+
AOI	Standard Process	No Known Issues	
Oxide	Horizontal or vertical acceptable	Extra care when lowering layers in slots so the layers don't dent on bottom of basket.	99+
Lay-up	Standard Process	No known issues. Core less likely to fracture than woven cores.	99+

Wrap-up

Presentation Summary

- Power needed when an IC chip turns on is delivered by the capacitors mounted near the chip.
- Reducing the inductance associated with the power delivery network results in many good things.
- Primary advantages are a reduced # of SMT caps required for your design and improved reliability.

HK04J Benefits Summary

- Fewer plated through holes due to fewer SMT capacitors
- Improved routing capability
- Probable layer count reduction
- Lower power and ground noise
- Reduced simultaneous switching noise
- Improved signal integrity
- No glass bundles no CAF issue
- Reduced board thickness

Designers Council

Detailed Technical Discussion, Please Contact to :

Jin-Hyun Hwang

Jin-Hyun.Hwang@dupont.com

(919) 248-5024

THANK YOU

The miracles of science™