Speed Matters Ormet Z Axis Paste and Zeta[®] Lock

CURRENT PRACTICE

Making z-axis connections

Comparison of Techniques

Sequential

- Unrestricted Via placement.
- Very thin layers do not require handling.
- Each build-up layer can be very thin.
 - Ease of drilling, plating

Parallel

- Limits via placement
- Buried vias in double sided cores
- Fast
 - Fewer process steps
 - Reduced process time
 - Less scrap risk

Sequential Build-Up

- As build-up layers are added, blind vias can be placed anywhere needed.
- Core maybe double sided or multilayer.
- Many combinations are possible.

"Any Layer" HDI

- Plated through holes, through vias, blind vias all connect copper foil layers in the z-axis.
- Unrestricted Via placement = "Any Layer"
 - Electrically discrete Vias anywhere on any layer.

Sequential processing (Build-Up)

- X-N-X
 - X = build-up layer
 - -N = Core
- 4-2-4
 - Double sided core (plated core)
 - 4 build-up layers on each side
 - 5 trips through lam, desmear, electroless Cu and electrolytic Cu
- 3-6-3 = 4 trips if core is plated
- 5-4-5 = 6 trips if core is plated

PASTE INSTEAD OF PLATING

"Any Layer" HDI using Paste

Z-axis conductors applied prior to lamination.

Paste interconnects used to connect 2-layer cores in a single process step

Why is Ormet Paste Different?

- Transient Liquid Phase Sintering (TLPS) Compositions comprising powder metallurgy (90% by weight) mixed in particulate form.
 - A low melting point alloy combined with high melting point metal
- During thermal processing:
 - The alloy becomes molten and reacts with the metal to form new alloy compositions and/or intermetallic compounds
 - This reaction continues until one of the reactants is fully depleted
 - The reaction starts at 150°C (normal lamination temperatures)
 - This is unlike most silver pastes which are held together by the polymer
- This also forms a metallurgical bond with metals it comes in contact with.

Ormet does not cure, it sinters into a metal mass

Ormet after sintering

After sintering, Ormet does not remelt even at assembly temperatures

Direction of tin migration

Bismuth Melt 267° C 10-16% of total matrix

Copper Melt 1085° C

Cu₃Sn intermetallic Melt 640° C

Cu₆Sn₅ intermetallic Melt 415° C

Sped Up Sintering.mov

Metallurgical Bond to Copper Layers

• During sintering alloying also occurs with copper innerlayer.

Comparison of Z-axis Paste Processes

Process	Paste Type	Paste Cure Before lamination	Bonding Dielectric	Metallurgical Bond
Ormet	TPLS Alloy	Νο	Many	Yes
ALIVH	Copper	Νο	Non-woven B-stage	Νο
B2it	Silver	Yes	RCC	Νο
Copper Pillar	Copper	N/A	Liquid or RCC	Νο

TLPS Paste = Thermally Stable Structure

Core to Core

Mixed Blind and Paste vias

Benefits of Paste Interconnect (72 layer, 4 x 18)

No back drilling allows for increased routing space

Source: Endicott Interconnect Technologies

Ormet Z Axis Interconnects Improve Throughput and Reduces Process Cost

		Minimum			
	PTH	Microvia	Lam.	Paste Layers	Cycle Time
3-4-3 Plating	2	4	4	0	107 hrs
Process #1	5	0	1	4	37 hrs
Process #2	0	0	6	8	53 hrs
Process #3	0	0	1	9	28 hrs
Total Process Steps	Seq Lam = >240 steps		Process 3 above = <50 steps		

- Very strong drivers to paste processes
 - Cost
 - Higher Yields
 - Speed
 - Circuit Density
 - Lower Capital Investment

Improved Yields & Reliability

Paste Interconnects eliminate IPC 6012 plating defects

- Wicking
- Copper voids in holes
- Plating folds
- Thin plating
- Hole wall or barrel separation

ZETA[®] LOCK

Guidelines for choosing B-Stage.

- Type
 - Most films suitable for flex (flow modified)
 - Pyralux LF, FR sheet adhesive.
 - Epoxy or polyimide blends (flow modified)
 Zeta[®] Lock
 - Most No-Flow (very low flow) Prepregs.
 - Make sure they can tolerate heat from the pre-tack and Ormet tack dry bakes.

What is Zeta[®] Lock?

- Combines Integral Technology's Zeta[®] materials with the Ormet Circuits Sintering Conductive Paste
- Provides a dielectric film formulated to contain the conductive paste in the via
- Reduces cycle time and process steps saving time and money

Zeta[®] Lock Properties

- B-Stage Film based on a new polymer
- Compatible with the Ormet Process
 - Withstands pre-tack and paste dry
 - Contains paste to laser defined via
 - Flow modified for excellent paste interconnects
 - Laser ready polyester cap sheet
 - Tg 195°C Td 340°C
 - Lead free assembly compatible
 - Halogen free
 - Standard PCB lamination equipment may be used
 - Dielectric Constant 3.4 (2 GHz @ 23°C)
 - Dielectric Strength 2400 volts/mil
 - Dissipation Factor .010 (2 GHz @ 23°)

Zeta Lock and Ormet 701

Zeta[®] Lock secures...

- Reliable sintered interconnects during lamination
 - Parallel fabrication process eliminates sequential yield loss
 - Increased Any Layer HDI for advanced designs
 - Combined offering in Zeta[®] Lock improved CTE matching
- Military and commercial markets
- Flex Rigid and Rigid PCB processing
- Working with OEM designers to educate on the design potential
- Zeta Lock and Ormet Paste can be used together or stand alone

Closing

Ormet and Zeta Lock can provide you...

- More Reliable Interconnections
- Design Flexibility
- Delivered Faster
- Provided at Better Value

We are sure this can help you in your market today!!

Thank You

Contacts

Jim Ryan Product Manager Insulectro 949 587 3390 jryan@insulectro.com

Chris Hunrath VP Technology Integral Technology 949 587 3338 <u>chunrath@integral-hdi.com</u>

