PCB Fabrication Enabling Solutions

TTM Technologies

Global Presence | Local Knowledge

June 3, 2015

Notice

Notification of Proprietary Information: This document contains proprietary
information of TTM and its receipt or possession does not convey any rights to
reproduce or disclose its contents, or to manufacture, use, or sell anything it may
describe. Reproduction, dissemination, disclosure, or use, in whole or in part,
without specific written authorization of TTM Technologies is strictly forbidden.
All data contained within this document are subject to this restriction.

Military/Aerospace Drove Advanced High Rel Technology...

C-130

C-17

Apache

JSF

F-22

Apollo

T-38

MIDS-LVT1

F-117

RAM

JEM Radio

KC-135

B-2

Until the late 90's !

Then things really got complicated...

Today's Agenda

Increasing Complexity

Today's PCB require a complex blend of many process technologies that must work in concert to provide a solution...

- Small die, shrinking geometries; pushing the limits of annular ring, aspect ratio, and sub 3 mil line & space
- Exponentially increasing I/O; Blind, buried, and laser drilled microvias to increase routing channel density
- Stacking microvias to accommodate fine pitch devices
- > Minimizing registration shifts, maximizing resolution
- > Optimizing Copper plating (Direct Current vs. Reverse Pulse Plating)
- > Materials and lamination limits vs. design constraints
- Improving outer layer etch on multiple lamination designs with FlatWrap
- > Thermal management

... The end goal is to put all the pieces together and examine the design and fabrication interactions.

PCB Market Drivers & Array Package Densities

How have Array Packages evolved and what is their impact on PCBs ?

Definition of an Array Package:

Array packages are defined as component packages where the I/O's (Input/Output) or leads can be defined in a "Matrix" pattern in terms of rows and columns. Array packages can provide greatest number of I/O's per unit area of any package since the entire bottom of the package can be used for connections.

Types of Array Packages

- Pin Grid Arrays "PGA"
- Ball Grid Arrays "BGA"
- Ceramic Column Grid Array "CCGA"
- Land Grid Array "LGA"
- Flip Chip

Design Considerations

- All Array packages present some form of routing challenges in the design process
- Special consideration must be given to board design with respect to assembly

LG/

Flip Chip

CCGA

BGA

Ball Grid Arrays "BGA"

Flip Chip (No Package!)

Flip Chip

- Flip Chip is the extreme form of an array package. High temperature solder balls are attached directly to the silicon die.
- Extremely fine ball pitch can push the limits of PCB geometries
- Larger silicon dies can not tolerate any warpage in the PCB substrate

• Silicon has a much lower CTE than PCB materials (2.5 PPM vs 18 PPM). To prevent damage to the interconnect on very large silicon die, the PCB must be designed with materials with a lower CTE than conventional epoxy or polyimide materials

Density Trends In Array Packages Assembled Cross-Section Views

Circuit Density & Mechanical Drilling limitations

Through Hole Routing dilemma for array patterns

Square Array Escape through Outside Row

How do we squeeze through the picket fence?

- Determine largest possible via drill diameter with the lowest aspect ratio
- Determine minimum pad diameter to achieve IPC Class II, tangency, or IPC Class III
- Maintain a minimum of 8 mils from the primary drill hole edge to any copper features
- Signal routing channels come in integer values (i.e. 1,2,3....n)
 - Track width and pad diameter should be maximized to take advantage of via or device pitch with respect to the maximum integer value of signal routes (in other words, don't shrink pads and or track widths if it does not create another signal route !)

TTM Technol

- Signal track width should be selected based on the electrical requirements

Array Pattern Escape, Through-hole IPC Class 2

Annular Ring Requirements For IPC Class 2 & 3

Characteristic	Class 2	Class 3
External Plated-through holes	Not greater than 90° breakout of hole from land when visually assessed. ¹ The land/conductor junction shall not be reduced below the allow- able width reduction in 3.5.3.1. The conductor junction should never be less than 50 µm [1,969 µin] or the minimum line width, whichever is smaller.	The minimum annular ring shall be 50 µm [1,969 µin]. The land/conductor junction shall not be reduced below the allow- able width reduction in 3.5.3.1. The minimum external annular ring may have 20% reduction of the minimum annular ring in isolated areas due to defects such as pits, dents, nicks, pinholes, or splay in the annular ring of isolated areas.
Internal Plated-through holes	90° hole breakout is allowed pro- vided the land/conductor junction is not reduced below the allowable width reduction in 3.5.3.1. ¹	The minimum internal annular ring shall be 25 μm [984 μin].
External Unsupported holes	Not greater than 90° breakout of hole from land when visually assessed. ¹ The land/conductor junction shall not be reduced below the allow- able width reduction in 3.5.3.1.	The minimum annular ring shall be 150 µm [5,906 µin]. The minimum external annular ring may have a 20% reduction of the minimum annular ring in isolated areas due to defects such as pits, dents, nicks, pinholes or splay in the annular ring of isolated areas.

TTM Technologies

Annular Ring requirement drives pad diameter Drill diameter +10 Mils (up to 100 mils thick) = pad diameter IPC Class 2 Pad diameter +10 Mils = anti-pad diameter

Annular Ring Measurement

Annular Ring Requirements For IPC Classes II & III

Minimum Drilled Hole To Copper & Minimum Class II Pad

- Internal pad designed for tangency
- Drilled hole to copper of 8 mils
- 3 mil space maintained

Internal pad designed minimum with breakout

- Drilled hole to copper of 7 mils
- 3 mil space can be violated

Array Pattern Routing for BGAs

Mechanical Drilling: How small can we go?

Same process, smaller drills !

- Alignment issues
- Drill wander
- Drill life
- Hole quality

Putting Small Diameter Drills Into Perspective

Array Pattern Escape: Through Hole IPC Class 2

Enabling PCB Equipment

- Laser Drilling
- Laser Direct Imaging
- Reverse Pulse Plating

Laser Drilling Technology Overview

- Hole diameters range from 4 to 8 mils and are typically in the 5 to 6 mil range
- Pad sizes are reduced (via +5 or 6 mil, instead of +10 mil), leaving more space for routing and smaller antipads
- Hole depth is limited by copper plating aspect ratio, typically 0.5: to 0.6:1 however higher aspect ratios can been achieved
- Both YAG and CO₂ lasers are used for PCB drilling. YAG lasers are in the ultra violet spectrum and can drill both copper and dielectric. CO₂ lasers are in the infrared spectrum and can drill dielectric materials
- The combined use of YAG and CO₂ lasers allow lasing of all common PCB materials at optimum speed
- Three step lasing operation provide optimum hole quality i.e. YAG to remove copper, CO₂ to remove dielectric and YAG to clean the copper pad
- It is not practical to laser drill all the way through a board unless it is less than about 10 mils thick

Laser Drilling Technology: The Quest For Speed !

Combination ND:YAG CO₂

Forms holes by removing copper with the ND:YAG laser and the dielectric and reenforcing material with the CO_2 laser (Approximately 3,500 to 13,000 holes per minute)

CO₂ (Infrared)

Capable of drilling most re-enforcing materials and laminate resin systems. Not effective for drilling copper (copper is reflective in the infrared spectrum and must be window etched) Forms holes by pulsing a larger high energy beam (Approximately 17,000 holes per minute)

ND:YAG (Ultra-Violet)

88

HITACH

Capable of drilling copper, all re-enforcing materials and all laminate resin systems. 25 to 50 micron beam forms holes by spiraling, or trepanning, the beam (Approximately 600 to 1,400 holes per minute)

Laser Drilled Hole Geometry

Laser drilled Microvia Layer 1 to 3 0.005"

TTM Technologies

Note:

- 1- Hole depth is limited by plating aspect ratio(depth/diameter)
- Typical aspect ratio on laser drilled holes is 0.5:1 to 0.6:1 max
- 2- Holes greater than 0.005" are generally considered too large
 - to be placed in component pad

Array Pattern Routing: Microvia

Routing By Via Row Reduction

Second Generation Microvia Geometries: Routing by via row reduction

Example of 100 I/O 0.4 mm Pitch Fan out Inverted Pyramid Approach

Stacked MicroVia (SMV[®])

0.4 mm BGA Advanced Construction ^{5 lams}

Finish Thickness = 0.054" +/- 0.005" Material = Isola 370 HR

Stacked MicroVia (SMV®)

0.4 mm BGA Advanced Construction 4 lams

Stacked MicroVias Layer 1 - 2, 2 - 3 & 3 - 4Layers 10 - 9, 9 - 8 & 8 - 70.009'' external 0.011'' pad internal 0.005'' laser drill Solid Copper Plate

TTM Technolog

Finish Thickness = 0.0315" +/- 0.004" (0.8 mm) Material = Isola 370 HR

Stacked MicroVia (SMV®)

0.4 mm BGA Advanced Construction

TTM Technolo

Why Laser Direct Imaging (LDI) ?

Current HDI designs require adaptive tooling to meet registration and resolution requirements

- Laser Direct Imaging (LDI) relies on soft tooling eliminating the need for photo tools (Film) saving time and recycling costs of silver base films
- LDI is an off contact imaging method allowing extremely high resolution
- Since LDI is a "soft tooling process" every image can individually registered and scaled for material compensation
- Increased accuracy allows smaller pad diameters while achieving annular ring requirements
- Precision solder mask registration can be achieved with LDI

Conventional Film-Based Photo Printing Process: The Real Limitation Is Space

 Minimum photo tool (minimum space)

TTM Technologies

The minimum photo tool opening is limited by the ability to image and fully remove unexposed resist in the narrow gap between traces with high yield

Laser Direct Imaging (LDI)

- Improved Resolution, 4000 dpi
- Current process capability (<0.0025"/0.0025")
- CCD Camera System & Target Fiducials
 - Improved Registration
- Positional Accuracy +/-25µm (.001in)

- Elimination of Photo Tools
- No Film/Artwork Movement
- Quick Turn Made Easy
 - Run product as soon as Engineering releases data to the floor
- **Reduction in Defect Count**
 - Direct Write = No Film related defects
 - No issues related to loss of vacuum

Scanning Optics

Laser Direct Imaging (LDI)

Precise Inner Layer Registration

24 Layer PCB Cross-Section

Laser Direct Imaging (LDI) Solder Mask (Optional Process)

- Laser Direct Imaged Solder Mask
 - Adaptively tooled
 - Improved Registration +/- 0.001" vs. +/- 0.003"

Standard LPI Solder Mask +/- 0.003"

Laser Defined Solder Mask +/- 0.001"

TTM Technologies

Consult TTM Engineering For Detailed Information Prior to Design

Advanced Plating Capabilities For HDI

HDI Circuits often require a variety of different plating operations to meet design requirements

High quality copper plating is essential for via reliability

- High aspect ratio plated through-holes, microvias, controlled depth holes and solid copper vias present many challenges for electroplating
- Some via structures can require several plating cycles increasing production time and product cost

TTM Techno

Reverse Pulse Plating is the building block to address these challenges

Aspect Ratio: Mechanically Drilled Through Holes

Example 1. Mechanically drilled through hole that will be used to penetrate the entire thickness of the PCB or a through hole that will be used in a mechanically drilled sublamination used to form blind or buried via's. In this configuration the depth of the hole is measured from the surface of the external copper layers. In this case if the hole diameter was 0.010" and the depth was 0.093" the Aspect Ratio would be 9.3 to 1

Aspect Ratio: Microvia & Controlled Depth Drilling

Limitations With Conventional "DC" Copper Electroplating

In conventional DC electroplating, edges of the hole barrel have easy access for copper ions to deposit resulting in higher current density and faster copper deposition

Regions deep in the hole barrel have a lower current density resulting in a lower deposition rate. The net result on high aspect ratio holes is that copper tends to be thicker at the edge of the hole barrel for a given thickness at the center

Reducing the overall current density can achieve more uniform plating thickness. However, if the current density is reduced too much the grain structure of the copper can become coarse leading to possible barrel cracking

TTM Technolo

High Aspect Ratio Copper Pulse Plating

High Aspect Ratio Reverse Pulse Plating Process

Current profile

Simplified Overview:

In the forward cycle Cu deposition is greater in high current density areas and lower in the center of the hole barrel. In the reverse cycle the brighteners are de-sorbed from the high current density areas slowing Cu deposition and then slowly return to the surface. This process continues resulting in fast uniform copper deposition.

"Reverse current cycle" brighteners are de-sorbed from the surface in high current density

High Aspect Ratio Copper Electroplating Reverse Pulse Plating Process

Aspect Ratio = 14:1 Thickness =0.112" Drill dia. = 0.008" Aspect Ratio = 16:1 Thickness = 0.216" Drill dia. = 0.0135"

Reverse pulse plating provides uniform copper plating in both high aspect ratio through holes as well as blind laser drilled and mechanical formed blind holes

Controlled depth mechanical drilling

0.005" Laser drilled microvia

High Aspect Ratio Copper Electroplating Reverse Pulse Plating Process

Reverse Pulse Plating Capabilities

Description	Aspect ratio Advanced	Via/Hole Diameter Emerging ¹	Dielectric/ Board Thickness
Microvia	0.6:1 1:1 ²	100 μm (0.004")	100 μm (0.004")
PTH	11:1 14:1	200 μm (0.008")	2.8 mm (0.112")
РТН	14:1 16:1	>337.5 μm >(0.0135")	5.4 mm (0.216")

Reverse Pulse Plating Line

Notes:

- 1- Always consult engineering with any application where the emerging capabilities are required
- 2- Requires special process and may not work on all applications
- 3- Extended flute length drills required, Typical dielectric thickness limit 1.57 mm (0.062")

Achieving Higher Densities Using Advanced Via Structures

Engineering Considerations For Via Structures

Via Structures: Mechanical Controlled Depth Drill

Controlled Depth Mechanically Drilled Hole

• Increased channel density on layers below the controlled depth drill

- Standard PTH geometry apply, Depth limited by aspect ratio
- No sequential lamination required

Via Structures: Laser Modified Controlled Depth Drill

Increased channel density on layers below the controlled depth drill

- Allows a connection with no stub
 - Standard PTH geometry apply, Depth limited by aspect ratio
 - No sequential lamination required

Via Structures: Blind Via

- Increased channel density on lower sub lamination
- Standard PTH geometry apply, reduced aspect ratio on sub drill
- Anti-pad diameter must account for tolerance buildup in multiple laminating cycles

Via Structures: Mechanically Drilled Blind and Buried

- Increased channel density on sub lamination
- Standard PTH geometry apply, reduced aspect ratio on sub drill
- Anti-pad diameter must account for tolerance buildup in multiple laminating cycles

TTM Technologies

No Z axis connectivity between adjacent sub-laminations

Via Structure: Laser Microvia

- Increased channel density on layer 1 and 2 from reduced geometry
- Increased channel density on layers n-1 to n resulting from a blind hole
- Standard PTH geometry apply to mechanical drilled holes
- Dielectric thickness layer 1:2 limited by plating aspect ratio (0.5:1 to 0.6:1)

TTM Technolo

Microvia Feature Variables		Copper Foil Weight			
	-	1/4 oz	3/8 oz	1/2 oz	1.0 oz
Layer 1 Copper Foil W1 ²					
Minimum Pad Diameter ¹	D1	0.008"	0.008"	0.010"	N/A
Pad Thickness: W1 + T1		0.0014"	0.0016"	0.0018"	0.0024"
Layer 2 Copper Foil W2 ²					
Minimum Space to Plane	S1	N/A	0.0035"	0.004"	0.005"
Minimum Space to Trace ⁴	S2	N/A	0.003"	0.0035"	0.004"
Minimum Capture Pad Dia. 1,5	D3	N/A	0.008"	0.010"	0.010"
Foil Thickness	W2	N/A	0.00045"	0.0006"	0.0012"
		Minimum	Maximum		
Laser Drill Diameter ³	D2	0.004"	0.006"		
Dielectric Thickness	H1	0.0025"	0.003"		
Cu Plating Thickness	T1	0.0012"			

Notes:

1- Recommended minimum pad diameters are drill diameter + 0.006"

2- 3/8 oz and 1/2 oz Cu foil weight are recommended (design permitting)

3- Larger hole diameter can be achieved with an increase in lasing and plating time

4- Minimum pad to trace assumes that the trace will pass the pad tangentially

5- 3/8 oz copper foil is not recommended for laser capture pad layers (non-Plated)

First Generation Microvia Geometries: (Microvia terminating on a foil layer)

Lowest cost due to one lamination cycle

Via Structure: Laser Microvia & Buried Mechanical Sub

- Increased channel density on layer 1 and 2 from reduced geometry
- Increased channel density on layers n-1 to n resulting from a blind hole
- Standard PTH geometry apply to mechanical drilled holes
- Dielectric thickness layer 1:2 limited by plating aspect ratio (0.5:1 to 0.6:1)

First Generation Microvia Geometries: (Microvia terminating on a plated layer)

Microvia Feature Variables		Copper Foil Weight			
	-	1/4 oz	3/8 oz	1/2 oz	1.0 oz
Layer 1 Copper Foil W1 ²					
Minimum Pad Diameter ¹	D1	0.008"	0.008"	0.010"	N/A
Pad Thickness: W1 + T1		0.0014"	0.0016"	0.0018"	N/A
Layer 2 Copper Foil W2 ²					
Minimum Space to Plane ⁴	S1	0.005"	0.005"	0.006"	0.008"
Minimum Space to Trace 4, 5	S2	0.003"	0.003"	0.0035"	0.004"
Minimum Capture Pad Dia. 1	D3	0.008"	0.008"	0.010"	0.010"
Plated Layer Thickness W2 +T2		0.0013"	0.0014	0.0016	0.0022"
	-	Minimum	Maximum		
Laser Drill Diameter ³	D2	0.004"	0.006"		
Dielectric Thickness	H1	0.0025"	0.003"		
	-	-			
Cu Plating Thickness	T1	0.0012"			
Copper Plating Thickness	T2	0.001"			

Notes:

1- Recommended minimum pad diameters are drill diameter + 0.006"

2- 3/8 oz and 1/2 oz Cu foil weight are recommended design permitting

3- Larger hole diameter can be achieved with an increase in lasing and plating time

4- Non-standard increased plating thickness (Wrap plating etc..) will increase minimum space

5- Minimum pad to trace assumes that the trace will pass the pad tangentially

First Generation Microvia Geometries: ("Staircase" Structure)

TTM Technolog

Finish Thickness = 0.062" +/- 0.006" Material = High temp FR4

First Generation Microvia Geometries: ("Staircase" Structure)

Example: Two layer offset "Staircase" microvia structure making a connection from layer 1 to Layer 3. Microvias from layer 2 to 3 does not require a plated copper fill, where as the microvia from layer 1 to 2, copper fill is optional but recommended for via-in-pad. H1 and H2 represent the dielectric thickness between layers and standard design rules apply.

1- Layer two consists of the 1:2 capture pad and the 2:3 land pad positioned tangent to each other. In order to avoid an acute angle between the two round geometries a fillet is required to make an oblong pad.

TTM Technolo

First Generation Microvia Geometries: ("Staircase" Structure)

TTM Technologi

Finish Thickness = 0.062" +/- 0.006" Material = High temp FR4

First Generation Microvia Examples: Microvia Through Hole Combo 1.0 mm

First Generation Microvia Examples: microvia & Buried & PTH Vias 1.0 mm (Min Offset)

First Generation Microvia Examples: Microvia Through Hole Combo 0.8 mm

First Generation Microvia Examples: Microvia Through Hole & Buried Combo 0.8 mm

First Generation Microvia Examples: Microvia Through Hole & Buried Combo 0.8 mm

First Generation Microvia Examples: Microvia "Stair Case" & Buried Combo 0.8 mm

First Generation Microvia Examples: Microvia "Stair Case" & Buried Combo 0.8 mm

Limitation of first generation microvias

Solder Joint Quality & Reliability...Via-In-Pad Micro Via

Ideal Solder Joint

Chip Scale BGA Package with Microvia in Pad

X-Ray of BGA site

Solder void within a solder ball at via-in-pad location

- Microvias vias in pad from layer 1 to 2 must have minimum volume after plating to prevent and or minimize solder voiding due to trapped volatiles
- Even with minimum microvia volume an optimized solder profile is often necessary
- Microvia in excess of 0.005" are too large for via in pad and generally result in solder voiding

Mechanical Via-In-Pad & Microvia Routing Geometries?

Mechanical via-in-pad requires wrap plating to meet the requirements of IPC 6012. This increases minimum line width and spacing that can be achieved due to increased copper thickness, in general greater than 5 mil line and space. Microvia Designs generally require line width and space less than 5 mils. There is a conflict ?

Mixed Signal Design

- Analog RF/ Microwave
- Via-In-Pad

TTM Technolog

- Critical line & Space
- Via stub removal
- Mixed depth blind via
- Multiple wrap plating

- Chip Scale Digital
- Microvia
 Stacked microvia
 3 mil line and space

Design Conflict !

Second Generation Microvias & Applications
First and Second Generation Laser Drilled Microvia Structures

2-4-2 HDI Substrate

Polymer Filled Microvias Not Recommended due to Reliability Concerns

Stacked Microvia using polymer fill and copper over-plate

Basic process for polymer fill

- Laser drill
- Electroless copper
- Electroplate copper
- Polymer fill
- Planarize
- Electroless copper
- Pattern plate

Advantages

- Less capital equipment
- No special chemistry

Disadvantages

Very difficult to get high percentage fill

- Wrap plating is required
- Many process steps

Recommended Fill Method: Solid Copper

Mechanism of copper filling

- Bottom-up filling behavior is attributed to the action of organic additives (must be controlled to prescribed limits)
- Suppressor rapidly forms current inhibiting film on Cu surface. Film has little geometric dependence due to high suppressor solution concentration
- Accelerated bottom-up fill behavior is due to a local accumulation of brightener species at the feature base
- As surface area is reduced during deposition, the concentration of brightener species increases, resulting in a nonequilibrium surface concentration. This local concentration of brightener accelerates the plating rate relative to the surface.

Planar Microvia

Stacked Microvia

Source: ROHM C ELECTRONIC MATERIALS

Advanced process plating room for solid copper via fill

Advanced PCB Structures using Stacked Microvias

- Solid copper microvias can be vertically stacked to gain deeper penetration to internal layers (Design Flexibility)
- In general, laser direct imaging is recommended for proper registration in high density PCB applications
- Stacked microvias require sequential lamination for each additional layer
- The number of vertically stacked layers is limited by the number of lamination cycles that materials are exposed to. In general, most laminates should not be exposed to more than three thermal lamination cycles (4 – 5 Advanced)
- Stacked microvias start with a plating cycle to develop a solid copper filled via, followed by a pattern plate cycle to produce the circuit image. Therefore, the pattern plate thickness must be accounted for in the circuit design

Second Generation Microvia Geometries: Solid Via Landing on a Non-Plated Layer – Design Guidelines

Microvia Feature Variables		Copper Foil Weight				
		1/4 oz	3/8 oz	1/2 oz	1.0 oz	
Layer 1 Copper Foil W1 ²						
Minimum Pad Diameter ¹	D1	0.008"	0.008"	0.010"	N/A	
Pad Thickness: W1 + T1		0.0014"	0.0016"	0.0018"	0.0024"	
Layer 2 Copper Foil W2 ²						
Minimum Space to Plane	S1	N/A	0.0035"	0.004"	0.005"	
Minimum Space to Trace ⁴	S2	N/A	0.003"	0.0035"	0.004"	
Minimum Capture Pad Dia. 1, 5	D3	N/A	0.008"	0.010"	0.010"	
Foil Thickness	W2	N/A	0.00045"	0.0006"	0.0012"	
		Minimum	Maximum			
Laser Drill Diameter ³	D2	0.005"	0.006"			
Dielectric Thickness	H1	0.0025"	0.003"			
Cu Plating Thickness	T1	0.0006"	0.0008"	0.001"	0.001"	

Notes:

 1- Recommended minimum pad diameters are drill diameter + 0.006"
 2- 3/8 oz and 1/2 oz Cu foil weight are recommended (design permitting)
 3- Larger hole diameter can be achieved with a significant increase in lasing and plating time

4- Minimum pad to trace assumes that the trace will pass the pad tangentially

Solid Via Landing on a Non-Plated Layer

Solid Via Landing on a Plated Layer – Design Guidelines

Use or disclosure of information contained on this page is subject to the restriction on page 2 of this document

Microvia Feature Variables	1	Copper Foil Weight				
		1/4 oz	3/8 oz	1/2 oz	1.0 oz	
Layer 1 Copper Foil W1 ²						
Minimum Pad Diameter ¹	D1	0.008"	0.008"	0.010"	N/A	
Pad Thickness: W1 + T1		0.0014"	0.0016"	0.0018"	N/A	
Layer 2 Copper Foil W2 ²						
Minimum Space to Plane ⁴	S1	0.005"	0.005"	0.006"	0.008"	
Minimum Space to Trace 4.5	S2	0.003"	0.003"	0.0035"	0.004"	
Minimum Capture Pad Dia. ¹	D3	0.008"	0.008"	0.010"	0.010"	
Plated Layer Thickness W2 +T2		0.0013"	0.0014	0.0016	0.0022"	
		Minimum	Maximum		T	
Laser Drill Diameter ³	D2	0.004"	0.006"			
Dielectric Thickness	H1	0.0025"	0.003"			
Cu Plating Thickness	T1	0.0012"				
Copper Plating Thickness	T2	0.001"				

Notes:

1- Recommended minimum pad diameters are drill diameter + 0.006*

2- 3/8 oz and 1/2 oz Cu foil weight are recommended design permitting

3- Larger hole diameter can be achieved with

a significant increase in lasing and plating time

4- Non-standard increased plating thickness (Wrap plating ect.) will increase minimum space

5- Minimum pad to trace assumes that the trace will pass the pad tangentially

Solid Via Landing on a Plated Layer

TTM Technolo

Finish Thickness = 0.042" +/- 0.004"

Second Generation Microvia Geometries: Stacked Microvia Examples

Example 1: Two layer stacked microvia (+2) terminating on a copper foil shown with a copper plate-fill on the layer 1 to layer 2 via for via-in-pad application. H1 and H2 represent the dielectric thickness between layers and standard design rules apply.

Example 2: Two layer stacked microvia (+2) terminating on a plated layer. This example illustrates how the internal solid copper vias become the building block for the vias on top until you get to the layer 1 to 2 via. The final 1 to 2 via has the option to be filled with copper (recommended for via-in-pad) or they can be left as a standard via with a divot if used as an interstitial via. H1 and H2 represent the dielectric thickness between the layers where standard microvia rules apply.

TTM Technolog

Solid Via Landing on a Non-Plated Layer

TTM Technolog

Solid Via Landing on a Non-Plated Layer

Microsection After Buried Via (*FLAT-WRAP™*) Cycled To Failure # of HATS cycles passed = 0.008" – 2,604 & 0.010" – 3,278

Lyr#	Lam	Drill: Plated	Lager:	Description:	Т	hicknes	s and Tolerances:	0				D: 7	.867	mils
Type:	Cycles:	CondFili NonCond	SMV	Ω impedance Layers	1	Copper:	Laminate / PrePreg:	Bace Materia	N:		and the second	A State of the second		
1.810	21	-	_	Foll (Toz)		.00045		0						
	. 18			Preg(1x1080-HRC)			.0025 +/- 0.0005	Polyelad FR	370 HR		and a second	The second second		and the second s
	12			- Sub Plating		.00100								
2 810				Foll (Toz)		.00045		100			Very state of the second state of the			
				Preg(1x1080)			.0026 +/- 0.0005	Polyolad FR	370 HR			1		
3 \$ lg				Core 0.0040 H/H		.00060	.0040 +/- 0.0005	Polyolad FR	370 HR.			D:	3.911	mils
4 Mix						.00080					Buildow Hocksburg	TOL AND AND	12	and the second second second second second
				Preg(2x108)			.0040 +/- 0.0005	Polyolad FR	370 HR	10				Nia
6 8 lg			_	Core 0.0040 H/H		.00080	.0040 +/- 0.0006	Polyolad FR	370 HR			Tree		
8 8 lg				8		.00080		-			an addining the second states of the second	CALCULATION OF A CALCUL		and a second
				Preg(2x108)			.0040 +/- 0.0006	Polyolad FR	370 HR			C.S.		
7 Mix				Core 0.0040 H/H		.00060	.0040 +/- 0.0005	Polyolad FR	370 HR		in an			
8 \$ ig				an ann an the service of the service	3	.00060		27/242010/0920						A THE OWNER OF THE OWNER OF THE OWNER
			-	Preg(2x108)			.0040 +/- 0.0005	Polyolad FR	870 HR			and the		
8 \$lg				Core 0.0040 H/H		.00060	.0040 +/- 0.0005	Polyolad FR	370 HR		NO. CONTRACTOR MANY AND	Maturipanen	7 867	The parameters and
10 Mix				Company of the other		.00060		Win other				The second	1.001	
				Preg(2x108)			.0040 +/- 0.0005	Polyolad FR	370 HR		authing the Advertisity and the			A State of second science of ballion and other after
11 8lg			_	Core 0.0040 H/H		.00060	.0040 +/- 0.0006	Polyolad FR	870 HR		Performance rol-diversity and			
12 8 lg						.00080		1				and the state		2.4
				Preg(2x108)			.0040 +/- 0.0006	Polyolad FR	370 HR			Sameral Sal		The case of repeated and the second second second
13 Mix				Core 0.0040 H/H		.00060	.0040 +/- 0.0005	Polyolad FR	370 HR					
14 8 lg						.00060						P	3,822	mils
		4	=	Preg(1x1080)			.0026 +/- 0.0005	Polyolad FR	370 HR		aller solition for contract of the solition of	a CAMPORE STATE		Attustion and the sector districts
16 ŝig				Foll (Toz)		.00045								Sec.
	<u>2</u> =3		6	- Sub Plating		.00100		North States						
				Preg(1x1080-HRC)			.0026 +/- 0.0005	Polyolad FR	370 HR					
18 Slg	21			Foll (T oz)		.00045								-8
Impedan	nce Requirem	ients:		Original Finish	1st 2nd	24	Ohms Z Ohms &	Diff Center	Coplanar	Coplanar	A the same had to be supported by the			
4	Impedance Ty	/pe			Pin. Pin	ĮG.	(Required)	to Center	(Original)	(Finished)	Roops according to the solution	Rate Market	279	
Contr	rolled Impe	edance No	otes:				Stackup Notes:						.5/0	
							- CAUTION: MIN. DIELECT ARE .0019.	RICS BETWEEN	1-2, 2-3, 14-1	5 & 15-16	D: 56	81 mil		D: 56 570 mil

SMV[™] - L1-L2/L2-L3 0.004" & 0.005" vias Passed 5,000 HATS cycle

TTM Technologies

16 Layer, 2+N+2, Stacked Microvia / Staggered Buried Via PCB Thickness 0.072" +/- 10%

Stacked MicroVia Landing on a Non-Plated Layer

Example 3: Three layer stacked microvia (+3) terminating on a Cu foil layer. In this example Stacked vias are making a connection from layer 1 to layer 4 where layer 4 is the second layer of the primary sub lamination thereby terminating on a foil layer. Vias from layer 2 to 3 and 1 to 2 both require sequential lamination and as a result become plated layers adding additional thickness. In Addition, layers 2 and 4 are shown as plane layers however, they could just as easy be signal layers, the important point to note, is that copper thickness is dependent on specific stack-up requirements since build-up layers do require copper plating.

Stacked MicroVia Landing on a Non-Plated Layer

Stacked MicroVia (SMV®)

L1-L2, L1-L3 & L1-L4

Second Generation Microvia Geometries: Stacked Microvia Examples

Solution for sub 0.5 mm pitch arrays

11	Lam Cycles:	Drill: Plated CondFill	Lager:	Description:	3		This	inness an	id Toleranoes: aminate / PrePren:	Bace Materi	al.	
	21	II NONCOND	II SMY	an	-		-		•			
1 8 lg		'-	-	Foll (Toz)			.0	0045				
	1			Preg(1x1080	HRC)				.0026 +/- 0.0006	Polyelad FR	370 HR	
	8			 Sub Plating 			.0	0100				
8lg	1 18	-		Foll (Toz)			.0	0045				
		-		Preg(1x1080	HRC)				.0026 +/- 0.0005	Polyolad FR	370 HR	
	an - 18		-	- Sub Plating			.0	0100				
sig			-	Foll (Toz)			.0	0046				
				Preg(1x1080	1				.0026 +/- 0.0005	Polyolad FR	370 HR	
81g		-		Core 0.0040 I	H/H		.0	0080	.0040 +/- 0.0005	Polyolad FR	370 HR	
Pin		-		- C.			.0	0060		-		
	1			Preg(1x108)	1				.0050 +/- 0.0005	Polyolad FR	370 HR	
				Preg(1x1080	HRC)							
81g		-		Core 0.0040 i	H/H		.0	0080	.0040 +/- 0.0005	Polyolad FR	370 HR	
Big		-		1.			.0	0060				
				Preg(1x108)	F				.0060 +/- 0.0005	Polyelad FR	370 HR	
				Preg(1x1080	HRC)							
Mb		-		Core 0.0050 I	H/H		.0	0060	.0050 +/- 0.0005	Polyolad FR	370 HR	
5 lg				d.			.0	0060		220		
				Preg(1x108)	K				.0050 +/- 0.0005	Polyelad FR	370 HR	
				Preg(1x1080	HRC)							
t lg		-	_	Core 0.0050 I	H/H		.0	0060	.0050 +/- 0.0005	Polyelad FR	370 HR	
Pin	1 2		Å	1			.0	0080				
				Preg(1x1080	-HRC)		-		.0050 +/- 0.0005	Polyolad FR	370 HR	
				Preg(1x108)	1							
\$10		-		Core 0.0050	H/H		.0	0060	.0050 +/- 0.0005	Polyolad FR	370 HR	
Mb							.0	0060				
				Preg(1x1080	HRC)				.0050 +/- 0.0005	Polyelad FR	370 HR	
				Preg(1x108)	1							
8 Ia		-		Core 0.0040 I	нлн		.0	0060	.0040 +/- 0.0005	Polyolad FR	370 HR	
210							.0	0060		0.00004.0004.000		
				Preg(1x1080	HRC)				.0050 +/- 0.0005	Polyelad FR	370 HR	
				Preg(1x108)	1.000					and the second second		
Pin		-		Core 0.0040	н/н		.0	0080	.0040 +/- 0.0005	Polyolad FR	370 HR	
810			_	el company services			.0	0060		-900-8180 meas		
				Preg(1x1080	1				.0025 +/- 0.0005	Polyolad FR	370 HR	
tin				Foll (Toz)			.0	0045		100		
	12 8			- Sub Plating			.0	0100				
				Preg(1x1080	HRC)				.0026 +/- 0.0005	Polyolad FR	370 HR	
210	1 1	_		Foll (Toz)			.0	0045		NO DICKNARA SEE		
		_	_	- Sub Plating			.0	0100				
	22			Preg(1x1080	-HRC)		-		.0026 +/- 0.0006	Polyolad FR	370 HR	
210	1		- 23	Foll (Toz)			.0	0046				
	21	CN-S		The second state			1000	0.05203		0		
edar	ice Requirer	ments:		Original	Finish	1st	2nd	Z-Ohma	Z Ohms &	Diff Center	Coplanar	Coplanar
1		COLOR DE LA COLOR		Line	Line	Ref.	Ref.	(Calc'd)	Tolerances (+/-%)	to Center	Specing	Spacing
	mpedance T	Type				Pin,	Pin.		(Hedubed)		(Onginal)	(Pintshed)
ntr	olled Imp	edance N	otes:					Sta	ckup Notes:			
			the second s			_	1	100	CALIFORN MINI DIELECT	DICC RETWEEN	LAVERC 1.0	03.34

20 Layer, 3+N+3, Stacked Microvia / Staggered Buried Via

PCB Thickness 2.46 mm +/- 10%

Microsection After Buried Via (*FLAT-WRAP™*) Cycled To Failure # of HATS cycles passed = 0.25 mm – 1,337 & 0.3 mm – 1,716

of HATS cycle passed 0.1 mm vias – 3,513 0.127 mm vias – 5,000

SMV[®] - L1-L2/L2-L3/L3-L4

Chip Scale BGA Escape using Stacked Microvias

Microvia Sub-lamination Interface Techniques

Advanced PCB Structures using Stacked Microvias

- Solid copper microvias can be vertically stacked to gain deeper penetration to internal layers (Design Flexibility)
- In general, laser direct imaging is recommended for proper registration in high density PCB applications
- Stacked microvias require sequential lamination for each additional layer
- The number of vertically stacked layers is limited by the number of lamination cycles that materials are exposed to. In general, most laminates should not be exposed to more than three thermal lamination cycles (4 – 5 Advanced)
- Stacked microvias start with a plating cycle to develop a solid copper filled via, followed by a pattern plate cycle to produce the circuit image. Therefore, the pattern plate thickness must be accounted for in the circuit design

Microvia stacked on Epoxy-filled Mechanical Via – NO!

Microvia Sub-Lamination Interface: Stacked On Sub-Via

Not Recommended on all designs: Contact engineering

Microvia Sub-Lamination Interface: Offset Via

Preferred Construction

Microvia Sub-Lamination Interface: Offset Via Stacked

Preferred Construction

Microvia Sub-Lamination Interface: Sub-Lam Microvia

Preferred Construction with additional low cost Microvia to layer 4

Next Generation - *SMV™* Technology

Next Generation - SMV[™] Technology

We're constantly working to enable new technologies to meet the needs of hightechnology customer demands with small, feature-rich products (ex. mobile phones, PDA, cameras, and other such products).

TTM Technolo

- *NextGen SMV™* Technology:
 - Requires one to two lamination cycle (based on design constraint), reducing fabrication time
 - Eliminates plating cycle of inner layers
 - Improves inner layer characteristics, signal integrity and electrical characteristics
 - Reduces demand on plating and lamination, improving facility capacity utilization
 - Allows for thinner finished product
 - Initial customer builds have been encouraging with significant early interest
 - This is a Viasystems patented technology

NextGen Technology

Examples of three concepts that have been developed

- NextGen-SMV[®] is a full build-up technology that is a single lamination parallel process (SLPP[™]) with conductive paste joints in the z-axis, provides Z-axis connectivity from, and to any layer
- HDI-Link[™] is focused towards minimizing lamination cycles on designs such as 3+N+3 or 4+N+4 or ...where 'N' is a conventional buried via and 3+ or 4+ build-up cores utilize *NextGen-SMV* technology to make the connection in the Z-axis with conductive paste
 - Sub-Link[™] is solution for high aspect ratio PCB's (> 40:1) where we build subsection of a PCB and connect the subs with conductive paste in the Z-axis

NextGen-SMV[™] Mass Terminated Microvia

Step 3. Adhesive and single sided etched core

Step 4. Laser drilled micro vias

Step 5. Filled micro vias

We continue to drive technology enhancements in the *SMV*[™] arena:

- Requires one to two lamination cycle (based on design constraint), reducing fabrication time
- Eliminates plating cycle of inner layers
- Improves inner layer characteristics, signal integrity and electrical characteristics
- Reduces demand on plating and lamination, improving facility capacity utilization
- Allows for thinner finished product

Step 6. After single lamination

Film adhesive

Metallic paste filler

Single Lam vs. Sequential Build-up Process Comparison of 10L PCB

Copper vs. Conductive Paste

SMV – Solid Copper Plate

NextGen-SMV[®] - Conductive Paste

- Inner layers are plated vs. print and etch = contrasting thickness of copper
- Differing thermal conductivity; Copper (385 W/mK) vs. Paste (25 to 40 W/mK)
- Bulk Resistivity; Copper (1.7 micro ohm cm vs. 50 micro ohm cm)

NextGen capability 30 layer any layer via connectivity

Guidelines for single shot lamination 8 to 12 layer PCB

Single lamination full build-up PCB								
	Standard	Advanced	Future					
Lead Time	7 days	5 days	3 days					
Layer Count	up to 10	12 to 14	up to 18					
Dielectric Thickness	0.081mm	0.081 & 0.094mm	0.069 & 0.107mm					
Via Diameter	0.152mm	0.127 & 0.152mm	0.1mm					
Pad Diameter	0.279mm	0.25 & 0.279mm	0.23mm					
Board Thickness	1.0mm	1.2 & 1.32mm	1.55 & 2.0mm					
Impedance	10 %	8 %	5 %					
Copper Weight	18 µm	18 µm	12 to 18 µm					
Material Type	High Temp FR4, Halogen Free	Low Loss Epoxy, BT, Halogen Free	High Speed					

DDi HDI-Link[™], Sub-to-core attach

NextGen 2 Lam 10 Layer

Conventional 4 Lam 10 Layer 3+N+3

Example of HDI-Link[™] 20 layer PCB with 3+N+3 construction

Sub-to-Core Attach

Example of HDI-Link[™] 14 layer PCB

3+N+3 (buried via = solid copper plate)

2 lamination cycle PCB build Conventional buried via (N) + NextGen layers

2 lamination cycle build; conventional buried via + NextGen layers								
	Standard	Advanced	Future					
Lead Time	10 days	7 days	5 days					
Layer Count	3+N+3	4+N+4	5+N+5					
Dielectric Thickness	0.081	0.081 & 0.094mm	0.069 & 0.107mm					
Via Diameter	0.152mm	0.127 & 0.152mm	0.1mm					
Pad Diameter	0.279mm	0.25 & 0.279mm	0.23mm					
Board Thickness	1.5mm	3.0mm	5.0mm					
Impedance	10 %	8 %	5 %					
Copper Weight	18 µm	18 µm	12 & 18 μm					
Material Type	High Temp FR4, Halogen Free	Low Loss Epoxy, BT, Halogen Free	High Speed					
DDi Sub-Link[™], Sub-to-Sub Attach

Conventional High Aspect Ratio PCB 30 + Layers Build PCB

DDi Sub-Link[™] High Aspect Ratio PCB 30 + Layers

DDi Sub-Link[™] - Solution for high aspect ratio PCBs Example of 32 layer Load Board; 11+10+11

Sub-to-Sub Attach

- Sub-Link™ (sub-to-sub attach)
 - Three subs (about 0.060" thick) were used as proof-of-concept
 - Developed a new concept for sub connectivity with conductive paste
 - Solid copper vias in subs with 0.006" mechanical drilled holes
 - PCB pass IPC standard electrical test requirement

DDi Sub-Link, Sub-to-Sub Attach

Sub-Link - Sub-to-Sub Attach Solution for High Aspect Ratio PCB

NextGen Sub-Link™ Design Guidelines

DDi Sub-Link™ BOARD CHARACTERISTICS							
	Standard	Advanced	Future				
Lead Time	15 days	12 days	7 days				
Layer Count	3 Subs	4 Subs	5 Subs				
Dielectric Thickness	Standard core and prepreg thickness	Standard core and prepreg thickness	Standard core and prepreg thickness				
Via Diameter	0.152mm	0.127mm	0.1mm				
Pad Diameter	0.279mm	0.25mm	0.23mm				
Board Thickness	ickness 4.6mm 6.0mm		7.62mm				
Impedance	10 %	8 %	5 %				
Aspect Ratio	30:1	40:1	50:1				
Material Type	High Temp FR4, Halogen Free	Low Loss Epoxy, BT, Halogen Free	High Speed				

NextGen Extension Enable HDI in Rigid-Flex PCBs

Rigid-Flex PCB with DDi NextGen-SMV®

PPSL[™] - Parallel Process Single lamination (all paste connectivity in the z-axis)

Microvia Sub-lamination Interface Techniques

Microvia: Sub-Lamination Interface

Basic design rules for Microvia build-up layers

Build-up dielectric layers must be balanced on either side of the sub-lamination

Build-up dielectric layers are generally 0.0025" (64µm) to 0.003" (75µm) thick

> The recommended total number of lamination cycles that any one part of the structure should experience is 3 and 4 - 5 for advanced structures

Microvias stacked on buried mechanical vias should be avoided due to wrap plating requirements and excessive stress on thicker substrates

Solid copper mechanically drilled vias can be used on thin sub-lamination cores in place of wrap plating

Microvia stacked on Epoxy-filled Mechanical Via – NO!

Microvia Sub-Lamination Interface: Stacked On Sub-Via

Not Recommended on all designs: Contact engineering

Microvia Sub-Lamination Interface: Offset Via

Preferred Construction

Microvia Sub-Lamination Interface: Offset Via Stacked

Preferred Construction

Microvia Sub-Lamination Interface: Sub-Lam Microvia

Preferred Construction with additional low cost Microvia to layer 4

Via-in-Pad, Wrap Plate, & FLAT-WRAP™

Standard Construction vs. Via-In-Pad circuit Construction

By using either conductive or non-conductive fillers and over plating with copper, through hole vias can be placed in component pads with no impact on the soldering process

IPC 6012C Specification For Wrap Plating Thickness

Table 3-3 Surface and Hole Copper Plating Minimum Requirements for Buried Vias ≥ 2 Layers, Through-Holes and Blind Vias¹

	Class 1	Class 2	Class 3
Copper - average ^{2,4}	20 µm [787 µin]	20 µm [787 µin]	25 µm [984 µin]
Thin areas ⁴	in areas ⁴ 18 μm [709 μin]		20 µm [787 µin]
Wrap ³	AABUS	5 µm [197 µin]	12 μm [472 μin]

Note 1. Does not apply to microvias. Microvias are vias that are ≤0.15 mm [0.006 in] in diameter and formed either through laser or mechanical drilling, wet/ dry etching, photo imaging or conductive ink formation followed by a plating operation. Blind vias with aspect ratios less than 1:1 shall be treated as microvias for plating thickness requirements. See Table 3-4.

Note 2. Copper plating (1.3.4.2) thickness shall be continuous and extend or wrap from hole walls onto outer surfaces. Refer to IPC-A-600 for discussion on copper plating thickness for hole walls.

Note 3. Wrap copper plating for filled PTHs and vias shall be in accordance with 3.6.2.11.1.

Note 4. See 3.6.2.11.

Table 3-4 Surface and Hole Copper Plating Minimum Requirements for Microvias (Blind and Buried)¹

	Class 1	Class 2	Class 3
Copper - average ^{2,4}	12 µm [472 µin]	12 µm [472 µin]	12 µm [472 µin]
Thin areas ⁴ 10 μm [394 μin]		10 µm [394 µin]	10 µm [394 µin]
Wrap ³	AABUS	5 µm [197 µin]	6 µm [236 µin]

Note 1. Microvias are vias that are < 0.15 mm [0.006 in] in diameter and formed either through laser or mechanical drilling, wet/dry etching, photo imaging or conductive ink formation followed by a plating operation. The values given for blind and buried microvias are not applicable for stacked microvias. As of the publication of this specification, there is little known about this structure and the reliability results are not consistent with buried and blind microvias. Stacked microvias may also require different inspection criteria.

Note 2. Copper plating (1.3.4.2) thickness shall be continuous and wrap from hole walls onto outer surfaces. Refer to IPC-A-600 for discussion on copper plating thickness for hole walls.

Note 3. Wrap copper plating for filled microvias shall be in accordance with 3.6.2.11.1.

Note 4. See 3.6.2.11.

IPC 6012C Specification For Wrap Plating Thickness

Table 3-5	Surface and Hole Copper	Plating Minimum Red	quirements for Buried	Via Cores (2 Layer	s)
		9				_

	Class 1	Class 2	Class 3		
Copper - average ^{1,3} 13 μm [512 μin]		15 μm [592 μin]	15 μm [592 μin]		
Thin areas ³	hin areas ³ 11 µm [433 µin]		13 µm [512 µin]		
Wrap ²	AABUS	5 µm [197 µin]	7 µm [276 µin]		

Note 1. Copper plating (1.3.4.2) thickness shall be continuous and extend or wrap from hole walls onto outer surfaces. Refer to IPC-A-600 for discussion on copper plating thickness for hole walls.

Note 2. Wrap copper plating for filled buried via cores shall be in accordance with 3.6.2.11.1.

Note 3. See 3.6.2.11.

Figure 3-17 Wrap Copper in Type 4 Printed Board (Acceptable)

Figure 3-18 Wrap Copper Removed by Excessive Sanding/Planarization (Not Acceptable)

Filled Via With Wrap Plating

Filled Via With Wrap Plating (VIPPO)

Non-conductive Via fill

TTM Technologies

Conductive Via fill

Alternative Wrap Plating Technology

Minimizing Copper Buildup FLAT-WRAP®

What Happens When More Than One Wrap Plating Cycle Is **Required**? **Conventional Wrap Plating** FLAT-WRAP[™] (3x wrap on a common layer) (3x wrap on a common layer) 1st Wrap Plate 2nd Wrap Plate 3rd Wrap Plate Required Required Required Via Fill Via Fill Cu Foil Cu Foil + 3x Via Fill Via Fill Wrap plate cycles Via Fill Via Fill Cu Pattern Plate Cu Pattern Plate Cu Foil Cu Panel Plate Cu Foil -Total surface copper after 3x wrap

Total surface copper after 3x wrap (Equal to starting base foil thickness)

FLAT-WRAP™ Technology

Current standard for IPC 6012B Class 3, 3 x wrap

DDi's *FLAT-WRAP™* Technology IPC 6012B Class 3, 3x wrap

• Industry specification (IPC 6012C) requires wrap-around plating for filled blind and buried via technology

- Current industry practices produce excessive plated copper on the required layer and limits the capability for surface feature packaging density (LWS dimensions)
- FLAT-WRAP[®] technology reduces surface copper thickness on multiple lamination product and enables finer geometries and facilitates improved design capabilities

Wrap Plating Design Guideline Comparison

Design Rule	IPC 6012 Cla	IPC 6012 Class 3 - assume a starting copper foil of 3/8 oz						
	No Wrap	1 X Wrap	2 X Wrap	3 X Wrap or greater	No Wrap	1 X Wrap	2 X Wrap	3 X Wrap or greater
Preferred	0.003" Line	0.005" Line	0.006" Line	0.006" Line	0.003" Line	0.005" Line	0.006" Line	Coll
	0.0035" Space	0.005" Space	0.007" Space	0.009" Space	0.0035" Space	0.00575" Space	0.0085" Space	Call
Advanced capability =	0.003" Line	0.004" Line	0.005" Line	0.006" Line	0.003" Line	0.005" Line	0.006" Line	
reduced yield (call engineering prior to quote)	0.003" Space	0.005" Space	0.006" Space	0.008" Space	0.003" Space	0.0055" Space	0.0075" Space	Call

Conventional Wrap Plate Design Guidelines

Note: Due to the overhang (caused by undercut during etch) all Gold body jobs or designs that utilize Gold as an etch resist and require wrap plating to meet IPC 6012, Class 2 or 3 specification, will need engineering approval prior to quote.....no exceptions

FLAT-WRAP[™] Technology Design Guidelines

Design Rule	IPC 6012	IPC 6012 Class 3 - Starting copper weight 1/2 oz						
	No Wrap 1 X Wrap 2 X Wrap		3 X Wrap or greater	No Wrap	1 X Wrap	2 X Wrap	3 X Wrap or greater	
Preferred	0.003" Line	0.003" Line	0.003" Line	0.003" Line	0.0035" Line	0.0035" Line	0.0035" Line	0.0035" Line
	0.0035" Space	0.0035" Space	0.0035" Space	0.0035" Space	0.004" Space	0.004" Space	0.004" Space	0.004" Space
Advanced capability =	0.003" Line	0.003" Line	0.003" Line	0.003" Line	0.003" Line	0.003" Line	0.003" Line	0.003" Line
reduced yield (call engineering prior to quote)	0.003" Space	0.003" Space	0.003" Space	0.003" Space	0.0035" Space	0.0035" Space	0.0035" Space	0.0035" Space

TTM Technolo

Note: Gold body jobs or designs that utilize Gold as an etch resist and require wrap plating to meet IPC 6012, Class 2 or 3 specification, will not need engineering approval if PCB's are fabricated with **this new t**echnology

FLAT-WRAP™ - Reliability Test Matrix

Description of Tests					Remarks	Test Status	Test Results
Manufacturability Tests	As received - Microsection PTH Quality	Plated Barrel Copper Thickness	Record Avg Plating Thickness		Microsection analysis performed by DDi	Completed	Passed
			200 (500)	3X	BGA coupons - DDi	Completed	Passed
	Solder Float Test -	Temperature Deg C	260 (500)	6X	BGA coupons - DDi	Completed	Passed
Pb-Free Assy Process	Quality	(Deg F)	000 (550)	3X	BGA coupons - DDi	Completed	Passed
Compatibility			288 (550)	6X	BGA coupons - DDi	Completed	Passed
	Pb Free Reflow Assembly Simulation	Temperature Deg C (Deg F)	260 (500)	4X	Microtek Labs to process BGA coupons through Pb Free profile through IR Reflow oven and DDi to do microsection analysis	Completed	Passed
				6X		Completed	Passed
	IST - Interconnect Stress Test	IST Pre- conditioning cycles at 260 C	4X		3 coupons / preconditioning (Total of 18 coupons). Dual sense test performed by DDi VA. Two different test conditions with San-Ei & CB100 via fill materials	Completed	Blind Vias No
			6X			& Reported by Avg Cycles	Failure & Thru Vias Pass 864 @ 6X & 1176 @ 4X
		Pb Free Assembly Profile Pre-					Blind Vias No
Reliability Tests			4X		IST testing to be perfromed by PWB Corp,	Completed & Reported	Failure & Thru Vias Pass 731 @
		conditioning, peak temp 260 C	6)	ĸ	Dual Sense to 1000 cycles	by Avg Cycles	6X & No Failure @ 4X
	HATS - Highly	Pb Free Assembly	0 4X		12 coupons tested. Test performed by	Coupons	Passed Passed
	Accelerated Thermal Shock	conditioning, peak temp 260 C	6X		Microtek Labs. Two different test conditions with San-Ei & CB100 via fill materials	MicroTek to 1000 cycles	987 average cycles

C²eT

Controlled Copper Etch Technology Precision Features For RF and Microwave Applications

Why Use Foil Only Features ?

Filters and other precision etched components

Why Use Foil Only Features ?

- RF and microwave circuits generally require printed components such as antenna, filters, couplers, resonators and precision taps
- As frequencies increase printed component size decreases with a demand for improved conductor resolution i.e. precise trace and space
- Current designs are demanding finished trace and space tolerance to be +/- 0.0005" to 0.0007" (predicated on customers demand for performance)
- Pattern plating on surface layers reduced conductor resolution
- Via-In-Pad required in many designs introduces wrap plating, increasing the background copper that must be etched, further reducing resolution
- Producing Foil Only etched features eliminates the plating and wrap plating in feature regions improving resolution

Applications In RF & Microwave Circuits

Sample stack-up of RF & Microwave job

Example of PCB Outer Layer

RF Outer Layer With Printed Filters

- Foil region consists of only foil and Cu flash plate
- Pattern plate region, standard copper thickness
- Photo tools are required for:
 - Foil only print and etch Pattern plate tools with foil only isolation Foil only photo tool to protect Foil Only region in final etch

Foil Only Features On Surface Plated Layers

Advanced Thermal Management Techniques

Thermal Conduction In PCBs

Factors Increasing Thermal Density

Density increase

Power dissipation 3 watts

Power density 1.08 watts/cm

- Dramatic increase in Semiconductor power
- Rapid reduction in component size

Power dissipation 3 watts

Power density 3.7 watts/cm

Thermal Conductivity

Thermal Limitations Of Dielectric Materials

Common dielectric materials have relatively low thermal conductivities where as electrical conductors have relatively high conductivities...

Electrical conductors 25 to 400 W/mK

... Increased thermal conductivity is achieved with conductors

Thermal Via Applications

Issues: Through holes will wick solder away from the component connection and deposit on the back side of the board ! Assembly issues have been eliminated !
Thermal Resistance: Parallel Thermal Vias

TTM Technologies

Note: Thermal via's placed in a 1.0 cm (0.0394) square

Methods To Increase Thermal Via Conductivity

Thermal Resistance vs Via Technologies

147

Solid copper Thermal Vias

Solid Copper Via

Т

	▶ ◄	
× =0.01000	INCHES NEW 20X	
		and the second s
COUNT = 803 MEAN X=0.002	39	
FOUNT - PRI		
MEAN X+0.002		
COUNT = 003 MEAN X=0.002	50	
COUNT = 603 MEAN X=0.002		
COUNT = 003 MEAN X=0.002	9	

- Process to provide solid copper fill at accelerated plating rates
- 10:1 aspect ratios are currently achievable
- Applications include:
 - Low resistance via's allowing high current or reduced diameter
 - Thermal via's with high conductivity
 - Potential replacement for wrap plating

Solid Copper Stacked Microvia

Thermal Resistance Parallel Vias

Number of thermal vias

TTM Technologies

Note: Thermal via's placed in a 1.0 cm (0.0394) square

Long term PCB Technology Roadmap

5 Year Technology Roadmap

Line /	Internal	0.0025" / 0.003"	0.0025" to 0.002" / 0.003" to 0.0025"	0.002" / 0.0020"	0.0015" to 0.002" / 0.0015" to 0.0020"	0.001" to .0015" / 0.0015" to 0.002"
Space	External	0.003"/ 0.0035"	0.003" to 0.0025" / 0.003" to 0.0025"	0.002" / 0.0025" to 0.002"	0.002" / 0.002"	0.0015" / 0.002"
Plated Laye Tolerance	er Etch	+/- 0.001" to +/- 0.0005"	+/- 0.00075" to 0.0005"	+/- 0.0005"	+/- 0.0003"	+/- 0.0003"
	Drill Size	0.010" / 0.008" / 0.006"	0.010" / 0.008" / 0.006"	0.008" / 0.006"	0.006" / 0.004"	0.006" / 0.004"
Drilled Via	Pad Size	0.020" / 0.018" / 0.016"	0.018" / 0.016" / 0.014"	0.014" / 0.012"	0.012" / 0.010"	0.010" / 0.008"
	Hole to Cu	0.008" to 0.006"	0.007" to 0.006"	0.006" to 0.005"	0.005" to 0.004"	0.004"
PTH Aspect Ratio		12:1 to 16:1 / 16:1 to 20:1 (ATE	16:1 to 20:1 (ATE 31:1)	20:1 to 24:1 (ATE 40:1)	24:1 to 28:1 (ATE 40:1)	28:1 to 33:1 (ATE 50:1)
Via Fill (Via-In-Pad)		10:1 to 12:1 (ATE 31:1)	12:1 to 16:1 (ATE 31:1)	16:1 to 20:1 (ATE 40:1)	20:1 to 24:1 (ATE 40:1)	24:1 to 30:1 (ATE 50:1)
BGA Pitch		0.65mm / 0.5mm / 0.4mm	0.5mm / 0.4mm	0.5mm / 0.4mm	0.4mm / 0.3mm	0.4mm / 0.3mm
	Via Size	0.006" / 0.005" / 0.004"	0.005" / 0.004"	0.005" / 0.004"	0.004" / 0.003"	0.003" / 0.002"
Micro Via	Pad Size	0.012" / 0.010" / 0.009"	0.010" / 0.009" / 0.008"	0.009" / 0.008"	0.008" / 0.006"	0.006" / 0.005"
Micro Via Aspect Ratio		0.6:1 to 1:1	0.8:1 to 1.2:1	1:1 to 1.25:1	1.25:1	1.25:1
CSP Pitch		0.3mm / 0.25mm	0.3mm / 0.25mm	0.25mm / 0.2mm	0.2mm / 0.15mm	0.15mm / 0.10mm
Micro Via	Via Size	0.004"	0.004" / 0.003" to 0.002"	0.004" / 0.003" to 0.002"	0.002" via or fan out from standard 0.004" microvia	0.0015" / 0.001"
	Pad Size	0.008" / 0.0068"	0.008" / 0.006"	0.006" / 0.005"	0.004"	0.003" / 0.003"
Line & Space - SMV with perimeter rout using std design		Perimeter rout only with 0.003"/ 0.0035" design rule	Perimeter rout only with 0.0025"/0.003" design rule	Perimeter rout only with 0.002"/0.0025" design rule	Perimeter rout only with 0.002"/0.002" design rule	Perimeter rout only with 0.0015" / 0.002" design rule
		2011	2012	2013	2014	2015

5 Year Technology Roadmap

Micro Via Aspect Ratio	0.6:1 to 1:1	0.8:1 to 1.2:1	1:1 to 1.25:1	1:1 to 1.25:1	1:1 to 1.25:1	
SMV & High Aspect Ratio Seed	4+N+4, evaluate PPR vs. DC	One step copper fill + pattern plate	High speed plating system	Plating distribution +/- 10%	High Speed High Throw Plating	
Metallization & Electro Plating	One step copper fill + pattern plate	Vertical vs. Horizontal	Low temp vapor deposition of copper	Fully additive process	System & Chemistry	
SMV NextGen	Reliability testing and production readiness	Phase II, expand capabilities	Integrate to Occam (explore)	Leverage modular concept to next level stacking application		
Expand R-Flex	Instal SMV process in OH	Rigid Flex capability in AH	CSP on R-Flex	Embedded Components	Embedded Components	
Capability		(should we explore the	BC & BR in R-Flex PCB			
Materials	Pb Free & Halogen Free, low Tg filled, High Perfromance filled, Z- axis Interconnect with conductive paste	Film based materials, High Perfromance Filled, FEP and bonding film	Advanced RF application	Film based, 0.001" to 0.002"	Film based, 0.001" to 0.002"	
Surface Finishes	ENEPIG (Universal Finish), Pb Free HASL, depends on market demand	Ormecon (Ag finish using nano technology)	Electroless Gold (Neutral), depends on market demand	Direct Immersion Gold (DIG), depends on market demand	Nano technology surface finishes	
Equipment / Process	LDI Solder Mask & Maskless Lithography, XACT, Pinnless Lamination, Vision Drill 180K+RPM	Maskless or Ink Jet Solder Mask, Vision Drill & Rout with variable RPM	Ink Jet Liquid Photo Resist, Next Generation Laser Drill	Quick Lamination Press	High speed laser structuring systems or water jet technology	
Embedded Technology - Passives & Actives	EPT (BC = ultra thin filled substrate (<0.001") / BR = Ohmega & TICER)	Embedded Active Technology - Active devices in PCB (IC, capacitors, resistors, etc.)		Ink Jet Technology for BR	High Dk heavily filled materials	
Thermal Management	Copper Core & Stablcor	Copper Core & Stablcor Advanced materials with nano		technology	Light w eight thermally conductive and not electrically conductive	
Future Technologies	Emb Active Tech, Embedded Circuit w / transfer technology and laser trench process, Photovoltaics, Optoelectronics, MEMS, Printable Electronics, and other industry					
	2011	2012	2013	2014	2015	

Viasystems Interconnect Technology

TTM Technologies

Summary

Today's Challenges are met by Enabling PCB Technologies...

- Start designs by defining the technology limiting packages
- Define the minimum technology set for the PCB design
- Look for a power delivery solution
- •Review the design interactions with the technologies selected
- Make sure the technology level is compatible with your PCB supply chain
- Rethink design strategies before "bending" the rules

...Sometimes a little more time spent on a design can dramatically reduce cost

Thank you!

TTM Technologies

Global Presence | Local Knowledge

For further information, please contact:

Gil White, Site Sales Director, AH; <u>gil.white@ttm.com</u>; 714-815-5946 Julie Ellis, FAE; <u>julie.ellis@ttm.com</u>; mobile 714-473-1867 Marty Grasso, GAM; <u>marty.grasso@ttm.com</u>; mobile 714-813-8254 Ryan Joly, GAM; <u>ryan.joly@ttm.com</u>; mobile 714-323-3213